Passage du 2D au 3D pour la simulation.

1. Garder seulement le plan xy

Cliquer sur xz et yz pour les désélectionner

2. Régler la longueur du plan xy

Edit	er Afficher Plans Membru	
	Annuler	Préférences ModelSmart3D
	Copier dans le presse papier	Dimension de la zone de travail X (cm) longueur + 5
	Préférences	Y (cm) 24
préfér	ences puis donner la bonne valeur à X : longueur + 5	2 (611) [24

3. Cliquer sur le bouton nœud

	Ì	•	÷	

- 4. Cliquer avec la souris sur le plan xy (en couleur)
- 5. Cliquer sur le menu nœud puis sur propriétés

N	euds Appuis Forces Analyse Aide					
e 🗸	Ajouter		1	Propriétés des noe	uds	x
	Sélectionner un noeud			< Précédent</th <th>Suivant>></th> <th>Annuler</th>	Suivant>>	Annuler
1	Sélectionner tous les noeuds			Aiouter un noeud	Appliquer	
				Na userud 1		
	Utiliser l'assistant "Création d'un noeud dans une membrure"			no noeua pr		
	Supprimer			X (cm) 7.5		⊟ BX
	I rouver les doublons !			Y (cm) 14.25		E BY
	Dimension			Z (cm) 4	□ TZ	🗆 RZ
<u>-</u>	Proprietes					
				×(N) 0	🗌 Translat	ée
6.	Cliquer sur le premier nœud mis en place	une b	oîte	Y (N) 0	🗌 Translal	ée
	s'ouvre.		Ajouter un no	eud Appliquer	OK	1
7.	Écrire les valeurs suivantes :		No poeud 1		lectionné	
8.	Cliquez ensuite sur Appliquer		⊂ Coordonnées			_
			X (cm) 5			
			Y (cm) 5	I I I I I I I	/ E BY	
			Z (cm) 4	TZ	Z 🗆 RZ	
						_

9. Cliquer ensuite sur Ajouter un nœud les valeurs passent à zéro

Ajouter un noeud	Appliquer OK
No noeud 2	🔲 Sélectionné
Coordonnées	Appuis
X (cm) 🚺	🗆 TX 🗆 BX
Y (cm) 0	🗆 TY 🗆 BY
Z (cm) 0	🗆 TZ 🗖 RZ

10. Écrire les valeurs du nœud suivant de votre dessin, exemple :

Ajouter un noeud	Appliquer OK	
No noeud 1	🗖 Sélectionné	
Coordonnées	Appuis Appuis	
X (cm) 15	TX BX	
Y (cm) 5		
Z (cm) 4	TZ RZ	
- Forces	La valeur Z reste à 4.	

11.Cliquer ensuite sur appliquer.

12. Refaire les opérations 9 – 10 – 11 pour tous les nœuds à ajouter.

13.Cliquer sur le bouton nœud

Propriétés des poeuds

14.Cliquer avec la souris sur le plan xy (en couleur)15.Cliquer sur le menu nœud puis sur propriétés

- **16.Cliquer sur ce dernier nœud** mis en place une boîte s'ouvre.
- 17.Donner les valeurs suivantes,

la valeur Z = largeur de votre pont + 4

:
\neg
,
۱ ·

19. Cliquer pour sélectionner tous les nœuds sauf le premier et le dernier.

20. Cliquer sur le menu plan et Plan XY et dernière fonction en bas à droite

Plar	Plans Membrures Noeuds Appuis Forces Analyse Aide		
Plan XY 🔸		\checkmark	Afficher/Cacher le plan
Plan XZ Plan YZ Déplacer le point de vue			Déplacer le plan Déplacer le plan sur un noeud
			Déplacer le(s) noeud(s) et le plan
	Déplacer l'origine		Dupliquer le(s) noeud(s) et déplacer le plan
Réinitialiser l'origine		\checkmark	Dupliquer le(s) noeud(s) et déplacer le plan sur un noeud

- **21.**Cliquer ensuite sur le dernier nœud, celui de devant. Tous les nœuds sont copier vers l'avant.
- 22. Relier les nœuds en utilisant le bouton membrure.
- 23.On clique sur le nœud, on ne relace le bouton de la souris que sur le nœud suivant.
- 24. Ajouter les 4 appuis des tables sur les nœuds de l'extrémité. Utiliser l'appui du milieu

Forces par défaut				
Force X	∫1			
Magnitude (Newtons)	⊂ Translatée			
Force Y	-5			
Magnitude (Newtons)	• Translatée			
Force Z	1			
Magnitude (Newtons)	⊂ Translatée			
Annuler	OK			

- 25.Ajouter les forces sur les 2 nœuds du milieu (passage des camions). Menu force puis définir la force par défaut : -5 translatée
- 26.Cliquer sur le Menu force puis ajouter une force en Y

27. Cliquer sur les deux ou les quatre nœuds du milieu

28.Régler la simulation :

Analyse Aide Lancer l'analyse ! Options d'analyse Þ Pas d'animation Animer les déplacements Données générales... Animer l'écroulement \checkmark Résultats des membrures... Vitesse d'animation Résultats des noeuds ... Agrandissement du déplacement ► Réinitialiser la géométrie Effacer les résultats Colorier les efforts axiaux Colorier les efforts de flexion Lancer l'éditeur de fichier Lancer l'éditeur graphique Colorier les membrure rompues Tenir compte de ► √_ Inclure le poids propre Trouver la (les) force(s) de rupture

b. Menu Analyse, Option d'analyse et colorier les efforts de flexion

- c. Faire le test
- Modifier votre pont pour améliorer la résistance, les membrures qui cassent en premier sont en rouge. Noter la force de rupture et colorier ces barres sur votre dessin
- e. Menu Analyse, Option d'analyse et colorier les efforts axiaux
- f. Faire le test
- g. Les membrures qui sont sollicitées sont en compression sont en vert, en traction en bleu. Reporter ces couleurs sur votre dessin de pont

a. Menu Analyse, Option d'analyse et trouver la force de rupture